Multi-Source Towed Streamer Acquisition Techniques

Finding Petroleum : New Geophysical Approaches

London March 9, 2017

Phil Fontana Chief Geophysicist, Polarcus

Enhancing Operational Efficiency and Overall SeismicTrace Density

Leveraging De-Blending of Overlapping Shots

Enhanced In-Line and Cross-Line Sampling with Extra Sources

Overlapping Shot Records

Raw 12-second Shot Records

Overlapping Shot Records

Deblended 12-second Shot Records

De-Blending Technology

2016 Session at SEG

• - SPNA 1 - Deblending and Marine Noise Attenuation

Shot-to-Shot Time Variations

Overlapping Shot Records

Channel Display : Input Channel 130

Overlapping Shot Records

Channel Display : After Deblending Channel 130

Shotpoint Interval and Overlap

1500 m water depth, 5 s shot interval time

t₂ = shot interval time = "unblended" zone = SPI / vessel speed

Shot Interference Zone

- Time of shot $1 = 0 = t_0$
- TWT of shot 1 water bottom reflection = $2D/V = t_1$
- Time of shot 2 = Shot Distance / Vessel Ground Speed = t_2
- TWT of shot 2 water bottom reflection = $t_2 + 2D/V = t_3$
- Time of shot interference = $t_3-t_1 = (t_2+2D/V)-(2D/V)$
- = t_2 = time between shots
- Water depth cancels out.

Dual-Source

Multi-Source Acquisition : Higher Geophysical Fidelity

- Designed to provide closer cross-line sampling and more unique ray-paths than dual sources on the same streamer configurations
- Dual-source cross-line sampling = 1/4 of streamer separation
- Triple-source cross-line sampling = 1/6 of streamer separation

Triple-Source

Multi-Source Acquisition : Higher Geophysical Fidelity

- Designed to provide closer cross-line sampling and more unique ray-paths than dual sources on the same streamer configurations
- Dual-source cross-line sampling = 1/4 of streamer separation
- Triple-source cross-line sampling = 1/6 of streamer separation

Dual-Source Array Configuration

Triple-Source Array Configuration

Bolt 3480 vs Bolt 2495 Signature Amplitude Spectra 6m Tow Depth and DFS-V Filter

Dual vs Triple Sources

We N101 06

Triple-Source Simultaneous Shooting (TS3), A Future for Higher Density Seismic?

J. Langhammer* (TGS) & P. Bennion (TGS)

SUMMARY

The use of triple-sources in marine seismic streamer acquisition has been tested in the past, but with no significant commercial success compared to dual-source acquisition. With the introduction of new and better low noise streamers, in addition to the ability to record and deblend simultaneous source data, it is time to revisit the use of triple-sources in marine seismic exploration for decreased crossline bin-size leading to better spatial resolution. The data from the triple-source configuration flip-flop-flap sequential firing mode, is similar in quality compared to flip-flop conventional dual-source acquisition mode. When firing off the triple-sources in simultaneous mode, giving reduced shot-point interval, the results appear to be better than for dual-source flip-flop mode mainly due to increased fold and less aliasing of pre-stack gathers. A triple-source configuration can find its application in shallow and deeper water areas for

imaging of targets where reduced crossline spacing and higher fold may be required.

Seq 069: Stack Dual-Source Flip-Flop Sequential

Seq. 111: Stack Triple-Source Flop-Flop-Flap Sequential

Triple Source Efficiencies

Redefining exploration efficiency and data quality

Triple Source Efficiencies

Reduced Operational Risk and HSE Exposure

Comparative Fuel Consumption: 12x100 Dual Source vs 14x100 Dual Source vs 10x150 Triple Source

		12x100x8	10x150x8	14x100x8
		100 Dual	100 Triple	100 Dual
		Source	Source	Source
Sail line interval	(km)	0.6	0.75	0.7
Sail lines		100	80	85
CMP/sail line km	(CMP/km)	24	30	28
Estimated Towed Drag @ 4.5 knot	(kN)	875	957	999
Estimated Hull Drag @ 4.5 knot	(kN)	76	76	76
Total Drag @ 4.5 knot	(kN)	951	1,033	1,075
Propulsion Efficiency Factor @ 4.5 knot	(kW/kN)	6.2	6.2	6.2
Propulsion Power	(kW)	5 <i>,</i> 896	6,403	6,667
Generator Efficiency Factor	(g/kWh)	215	215	215
Propulsion Fuel Consumption	(ton/day)	30.4	33	34.4
Fixed Fuel Consumption	(ton/day)	13	13	13
Total fuel	(ton/day)	43.4	46	47.4
Relative consumption	(ton/day)	43.4	36.8	40.3
Reduced fuel consumption and emissions		100%	85%	93%

Shot Interval vs Overlap Time vs Trace Density 14x100 Dual Source vs 10x150 Triple Source

Streamer Spread	Number of sources	Source Separation (m)	Cross-line CMP (m)	Shot Interval (m)	Source Interval (m)	Nominal Bin Fold*	Shot Overlap Time (s)**	Sail-Line Interval (m)	Trace Density (traces/sq km)
Dual Source				_	_	_	-	_	
14x100	2	50	25	25.000	50.00	81	10.80	700	518,200
16x100	2	50	25	25.000	50.00	81	10.80	800	518,400
Triple Source									
10x150	3	50	25	12.500	37.50	108	5.40	750	691,028
10x150	3	50	25	9.375	28.13	144	4.05	750	921,371
10x150	3	50	25	8.300	24.90	163	3.59	750	1,036,957
Nominal Bin Fold* Based upon 8100m streamer length and 12.5m group interval									
Shot Overlap Time (s)** Shot interfernce occurs at this time below mud-line for 4.5kt vessel ground speed									

Trace Density = Num of Streamer Channels x Num of Inline shots/km x Num of Crossline sail line/km

Cygnus – Triple Source

Cygnus Multi-Client 3D Survey Vulcan Sub-basin, Western Australia

- Cygnus 3D (7,240 km²) Vulcan sub-basin
- Survey located between Ashmore Platform and Londonderry High
- general structural trend is NE-SW
- parameters chosen to significantly enhance imaging from Paleogene to Permian
- Existing data and reprocessing of it, is inadequate for the sub-surface imaging
- New Broadband 3D is required:
 - Shooting in dip direction
 - Adding more shots (triple source); increased ray-paths (108 fold)
 - Narrower x-line bin size (18.75m)
 - Longer offsets (8,100m)
 - RIGHTBAND de-ghosting to increase lowfrequency resolution (6m source, 15m streamer)

Penta-Source

Multi-Source Acquisition : Higher Geophysical Fidelity

• Designed to provide 6.25-meter cross-line sampling with real data using conventional streamers

Penta-Source Array Configuration

Baxter Five-Source Survey

Main Area in Green = 417 km² Acquired with Penta-Source configuration for 6.25m cross-line with 9,000m streamers

Conventional "Control Area" in yellow = 60 km^2 Acquired with 10 x 100 x 9,000m and dual 3string source arrays

SEG 2016 - Dallas

Baxter: a high-resolution penta-source marine 3D seismic acquisition

Ed Hager, Polarcus; Rob Kneale, Laurence Hansen, Quadrant Energy; Troy Thompson, DownUnder GeoSolutions

Streamer Separation

- Efficiency gained by hit-5 miss-2 sub-surface lines
- Closer separation on the inner cables, use wider on outer to give reasonably even coverage with fan

Penta-Source : Case Study : Time Slice 2720 ms, Conventional

Quadrant_Baxter_Conventional_Fast-track_PSTM -2,652.56

Penta-Source : Case Study : Time Slice 2730 ms, Penta-Source

Penta-Source : Case Study : Coherency 3100 ms, Conventional

Penta-Source : Case Study : Coherency 3100 ms, Penta-Source

Multi-Source Surveys

- Completed 2015 -2016 :
 - Triple Source, TGS Barents Sea
 - Triple Source, PLCS Cygnus
 - Triple Source, Apache Suriname
 - Triple Source, Ophir Indonesia
 - Triple Source, Edison Barents
 - Triple Source, Malta
 - Penta Source, Quadrant Australia
- Expected 2017:
 - Triple Source, Norway (30,000 sq km awarded)
 - Triple Source, Brazil
 - Triple Source, Ireland
 - Penta-Source, Arabian Gulf (tested)
 - Penta-Source, Netherlands

Conclusions

- Leveraging de-blending of overlapping shots provides the opportunity to sample 3D towed streamer seismic data with more sources and less streamers.
- Sources can be used to increase overall efficiency and/or increase inline and crossline trace sampling density.
- The reduction of the number of streamers provides a significant reduction in capital costs and risks, operational risks, and HSE exposure during deployment, retrieval, and daily streamer maintenance.
- Result More, better, quicker!

Thank you for your time and attention

